

Current Transducer LF 2005-S/SP9

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

El	ectrical data						
I _{PN}	Primary nominal current	rms		1000			А
I _{PM}	Primary current, measuri	ng range @ ± 24 V		0 ± 2000			А
Î	Overload capability @ 25	i0 µs		50			kA
R _M	Measuring resistance @		T _A =	70°C	T _A =	= 85°C)
			R _{Mm}			nin R M r	
	with ± 15 V	@ ± 1000 A _{max}	0	27	0	26	Ω
		@ ± 1700 A _{max}	0	2	0	1	Ω
	with ± 24 V	@ ± 1000 A _{max}	0	69	3	68	Ω
		@ ± 2000 A _{max}	0	18	3	17	Ω
I _{SN}	Secondary nominal curre			200		I	mΑ
K _N	Conversion ratio			1:500	0		
V _c	Supply voltage (± 10 %)			± 15	24		V
I _c	Current consumption			33 (@ :	± 24 V) + I _s	mΑ

Accuracy - Dynamic performance data

Linearity error	< 0.1	%
Response time ¹⁾ to 90 % of I _{PN} step	< 1	μs
di/dt accurately followed	> 100	A/µs
Frequency bandwidth (- 1 dB)	DC 100	kHz
	Response time ¹⁾ to 90 % of I _{PN} step di/dt accurately followed	Response time 1) to 90 % of I PN step< 1

Test circuit

1000	
16	Ω
0.1 ²⁾	А
	16

General data T_A Ambient operating temperature T_S Ambient storage temperature R_S Secondary coil resistance@ $T_A = 70^{\circ}C$ @ $T_A = 70^{\circ}C$

		@ T _A = 85°C	34
m	Mass		1.65
	Standards		EN 50155: 2001

Notes: 1) With a di/dt of 100 A/µs

²⁾ Maximum 1 A during 10 seconds 6 times per hour.

³⁾ Between primary and secondary + test.

$I_{PN} = 1000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- I_{PN} = 1000 A
- I_{PM} = 0 .. ± 2000 A
- V_c=± 15 .. 24 (± 10 %) V
- V_d = 12 kV³⁾
- N_τ = 1000 turns
- **T**_A = 40°C .. + 85°C
- Secondary connection on shielded cable 5 x 0.5 mm²
- Customer marking.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

°C

°C

Ω

Ω

g

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

• Traction.

- 40 .. + 85

- 40 .. + 85

33

Page 1/4

Current Transducer LF 2005-S/SP9

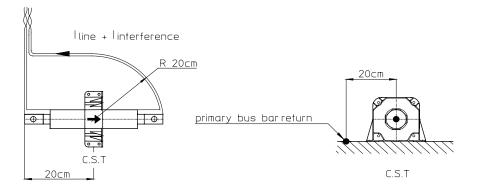
Isolation characteristics

\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 Hz, 1 min	12 ¹⁾ 500 ²⁾	kV V
\mathbf{V}_{e}	Rms voltage for partial discharge extinction @ 10 pC	≥ 4.1 ³⁾ Min	kV
dCp dCl CTI	Creepage distance Clearance distance Comparative Tracking Index (group I)	51.5 51.5 600	mm mm

Notes: ¹⁾ Between primary and secondary + test

²⁾ Between shield and secondary + test

³⁾ Test performed with a non-insulated bus bar (dimension


290 x 50 x 10 mm) centered in the aperture.

DC offset [At]

Maximum range of measured current					
Temparture range	-100 + 100	-500 + 500	- 1000 + 1000 A	- 2000 + 2000 A	
-25°C + 85°C	± 3.6	± 3.8	± 4.0	± 4.8	
-40°C + 85°C	± 5.1	± 5.3	± 5.5	± 6.3	

Maximum DC offset for different ranges of temperature and measured current.

Wiring plan for DC component measuring

Accuracy for the measurement of a single frequency signal

Frequency	20 200 Hz		200 30	000 Hz
Amplitude	Amplitude Error [%]	Phase Error [%]	Amplitude Error [%]	Phase Error [%]
0.1 0.5 A	± 55	-15.0	± 55	22
0.5 1 A	± 17	-14.0	± 48	22
1 2 A	± 7.0	-7.4	± 32	14
2 10 A	± 6.6	-1.6	± 17	6.2
10 20 A	± 3.7	< -1.0	± 6.8	-1.4
20 50 A	± 2.8	< -1.0	± 3.6	< -1.0

Amplitude error: in % of the measured signal.

Phase error: in degrees with respect to the measured signal.

Maximum amplitude and phase errors for single frequency signals.

High error values are due to zero-crossing distortion.

Page 2/4

Frequency	20 200 Hz		200 30	000 Hz
Amplitude	Amplitude Error [%]	Phase Error [%]	Amplitude Error [%]	Phase Error [%]
0.1 0.5 A	± 2.2	-1.6	± 4.4	1.4
0.5 1 A	± 2.5	-1.6	± 4.1	< -1.0
1 2 A	± 2.5	-1.6	± 4.1	< -1.0
2 10 A	± 6.1	-1.1	± 7.0	< -1.0
10 20 A	± 6.1	< -1.0	± 8.8	< -1.0
20 50 A	± 6.0	< -1.0	± 7.5	< -1.0

Accuracy for the measurement of a signals added to a DC current \ge 10 A

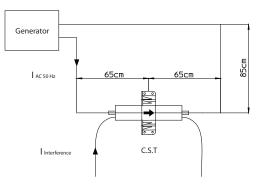
Amplitude error: in % of the measured signal.

Phase error: in degrees with respect to the measured signal.

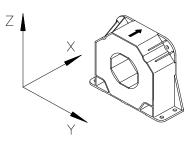
Maximum amplitude and phase errors for signals added to a DC fundamental.

Accuracy for the measurement of a signals added to an AC (fundamental) current (15 Hz < f < 100 Hz), \ge 10 A rms

Frequency	20 200 Hz		200 30	000 Hz
Amplitude	Amplitude Error [%]	Phase Error[%]	Amplitude Error [%]	Phase Error [%]
0.1 0.5 A	± 1.6	< -1.0	± 2.3	< -1.0
0.5 1 A	± 1.2	< -1.0	± 1.9	< -1.0
1 2 A	± 0.9	< -1.0	± 1.3	< -1.0
2 10 A	± 0.6	< -1.0	± 0.8	< -1.0
10 20 A	± 0.6	< -1.0	± 0.7	< -1.0
20 50 A	± 1.0	< -1.0	± 1.0	< -1.0


Amplitude error: in % of the measured signal.

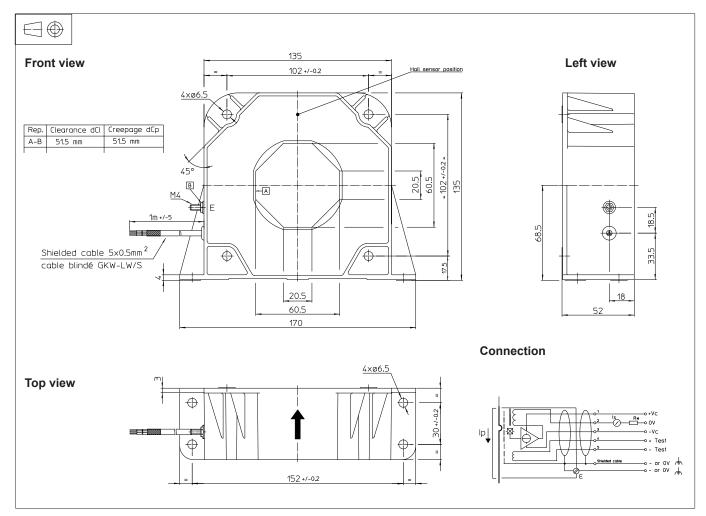
Phase error: in degrees with respect to the measured signal. Maximum amplitude and phase errors for signals added to a AC fundamental.


Influence regarding external magnetic fields

Frequency	0 5 Hz Max error	5 Hz 200 Hz Max error
Direction	[mAt _{rms} per A/m]	[mAt _{rms} per A/m]
X-axis	0.16	0.18
Y-axis	3.3	5.3
Z-axis	0.04	0.08

Error in the measurement of the primary current [mA $_{\rm rms}$] due to external magnetic fields at the specified frequencies for the three axes of the transducer

Wiring plan for measurements with an AC component.



Orientation of transducer during magnetic field sensitivity testing.

Page 3/4

Dimensions LF 2005-S/SP9 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance •

Transducer fastening 4 holes Ø 6.5 mm, Vertical or flat position 4 M6 steel screws

Recommended fastening torque

- Primary through-hole 60.5 x 20.5 • Or Ø 56 mm max shielded cable
- Connection of secondary •
- 5 x 0.5 mm² Connection shields
- M4 threaded stud •
- Recommended fastening torque 1.2 Nm or .88 Lb.-Ft. •

± 0.5 mm

4.2 Nm or 3.1 Lb.-Ft.

Remarks

- I_{s} is positive when I_{p} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed • 100°C.
- Dynamic performances (di/dt and response time) are best • with a single bar completely filling the primary hole.

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.